首页> 外文OA文献 >Bag of Visual Words and Fusion Methods for Action Recognition: Comprehensive Study and Good Practice
【2h】

Bag of Visual Words and Fusion Methods for Action Recognition: Comprehensive Study and Good Practice

机译:视觉词汇和行动识别的融合方法:   综合研究和良好实践

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Video based action recognition is one of the important and challengingproblems in computer vision research. Bag of Visual Words model (BoVW) withlocal features has become the most popular method and obtained thestate-of-the-art performance on several realistic datasets, such as the HMDB51,UCF50, and UCF101. BoVW is a general pipeline to construct a globalrepresentation from a set of local features, which is mainly composed of fivesteps: (i) feature extraction, (ii) feature pre-processing, (iii) codebookgeneration, (iv) feature encoding, and (v) pooling and normalization. Manyefforts have been made in each step independently in different scenarios andtheir effect on action recognition is still unknown. Meanwhile, video dataexhibits different views of visual pattern, such as static appearance andmotion dynamics. Multiple descriptors are usually extracted to represent thesedifferent views. Many feature fusion methods have been developed in other areasand their influence on action recognition has never been investigated before.This paper aims to provide a comprehensive study of all steps in BoVW anddifferent fusion methods, and uncover some good practice to produce astate-of-the-art action recognition system. Specifically, we explore two kindsof local features, ten kinds of encoding methods, eight kinds of pooling andnormalization strategies, and three kinds of fusion methods. We conclude thatevery step is crucial for contributing to the final recognition rate.Furthermore, based on our comprehensive study, we propose a simple yeteffective representation, called hybrid representation, by exploring thecomplementarity of different BoVW frameworks and local descriptors. Using thisrepresentation, we obtain the state-of-the-art on the three challengingdatasets: HMDB51 (61.1%), UCF50 (92.3%), and UCF101 (87.9%).
机译:基于视频的动作识别是计算机视觉研究中的重要且具有挑战性的问题之一。具有局部特征的可视化词袋模型(BoVW)已成为最受欢迎的方法,并且在HMDB51,UCF50和UCF101等几个实际数据集上获得了最先进的性能。 BoVW是从一组局部特征构建全局表示的通用管道,主要包括五个步骤:(i)特征提取,(ii)特征预处理,(iii)代码簿生成,(iv)特征编码和( v)合并和规范化。在不同的场景下,每个步骤都独立进行了许多努力,但它们对动作识别的影响仍然未知。同时,视频数据展示了视觉模式的不同视图,例如静态外观和运动动态。通常提取多个描述符来表示这些不同的视图。其他领域已经开发了许多特征融合方法,并且从未研究过它们对动作识别的影响。本文旨在对BoVW的所有步骤和不同融合方法进行全面研究,并揭示产生状态的一些良好实践。动作识别系统。具体来说,我们探索了两种局部特征,十种编码方法,八种合并和归一化策略以及三种融合方法。我们得出结论,每个步骤对于最终识别率的提高都是至关重要的。此外,在我们的综合研究基础上,我们通过探索不同BoVW框架和局部描述符的互补性,提出了一种简单而有效的表示方法,称为混合表示。使用此表示,我们获得了三个具有挑战性的数据集的最新信息:HMDB51(61.1%),UCF50(92.3%)和UCF101(87.9%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号